– تغييرات بارش با ارتفاع

مقدار بارندگي در مناطق مختلف به شدت تابع ارتفاع مي‌باشد به طوريكه ميزان بارندگي در ايستگاه كوه سفيد با ارتفاع 830 متر به طور متوسط 7/117 ميليمتر، به طور متوسط 7/117 ميليمتر، در ايستگاه دوشان تپه با ارتفاع 1220 متر به طور متوسط در 244 ميليمتر و در ايستگاه لواسان بزرگ با ارتفاع 2200 متر به طور متوسط 5/553 ميليمتر مي‌باشد و در ايستگاه دوشان تپه با ارتفاع 1220 متر به طور متوسط 1/244 ميليمتر مي‌باشد.

در طرح جاماب كشور تغييرات بارندگي نسبت به ارتفاع با توجه به متوسط بارندگي 20 ساله 111 ايستگاه باران سنجي واقع در حوزه آبخيز كرج- جاجرود به صورت زير ارائه گرديده است.

نکته مهم : برای استفاده از متن کامل تحقیق یا مقاله می توانید فایل ارجینال آن را از پایین صفحه دانلود کنید. سایت ما حاوی تعداد بسیار زیادی مقاله و تحقیق دانشگاهی در رشته های مختلف است که می توانید آن ها را به رایگان دانلود کنید

(3-1)                                                       H28/0+3/10 –P=

101= N

847/0 = R

كه در آن P بارندگي متوسط سالانه بر حسب ميليمتر و H ارتفاع ايستگاه حسب متر مي‌باشد. رابطه فوق‌الذكر تغييرات بارندگي نسبت به ارتفاع را در منطقه وسيعي شامل كوهستانها و كوهپايه‌هاي البرز مركزي به طور ميانگين بدست مي‌دهد. جهت افزايش دقت در تعيين ميزان بارندگي متوسط سالانه و تغييرات آن با ارتفاع در منطقه مورد مطالعه اقدام به تعيين گراديان بارندگي بر اساس داده‌هاي بارندگي 18 ايستگاه در دوره 27 ساله 78-51 گرديد. بدين ترتيب رابطه تغييرات بارندگي نسبت ارتفاع به صورت زير حاصل گرديد:

(3-2)                                                         H38/0+6/193- = P

18= N

846/0 = R

شكل 3-1 گراديان متوسط بارندگي سالانه را حسب ارتفاع نشان مي‌دهد.

شكل 3-1 گراديان متوسط بارندگي سالانه را حسب ارتفاع

 3-2- شبكه ايستگاهها

اندازه‌گيري، ثبت و انتشار داده‌هاي بارندگي (و ساير عوامل اقليمي) در كشور به طور عام و گسترده توسط سازمان هواشناسي و وزارت نيرو انجام مي‌گيرد. مراكز ديگري نظير وزارت جهاد كشاورزي، دانشگاهها و موسسات تحقيقاتي، وزارت نفت و غيره نيز اندازه‌گيريهايي در بعضي نقاط انجام مي‌دهند كه گستردگي زيادي ندارند.

آمار ثبت شده بارندگي ايستگاههاي سازمان هواشناسي كشور در تقويم ميلادي است. واحد آمار بارندگي بر حسب ميليمتر است ولي دقت اعداد ثبت شده متفاوت و بسته به نوع باران سنجها، دهم يا صدم ميليمتر مي‌باشد. دسته‌بندي ايستگاهها در سازمان هواشناسي در قالب تقسيمات استاني صورت گرفته است.

آمار ثبت شده بارندگي ايستگاههاي وابسته به وزارت نيرو در تقويم شمسي (سال آبي) است و دسته‌بندي ايستگاهها در سطح كشور در وزارت نيرو در قالب حوزه آبخيز بوده و با كد مشخصي شناخته مي‌شوند.

3-2-1- شبكه ايستگاههاي موجود

در منطقه تحت بررسي ايستگاههاي زيادي در حدود 123 ايستگاه اعم از باران سنجي، سينوپتيك، تبخير سنجي و اقليم‌شناسي وابسته به سازمان هواشناسي و وزارت نيرو وجود دارد كه مشخصات همه ايستگاهها و نيز طول دوره آماري آنها در جداول پيوست (1) درج شده است.

3-2-2- شبكه ايستگاههاي استنادي

تحقيقات مربوط به بارندگي، خصوصاً هنگامي كه به صورت منطقه‌اي و با استفاده از ايستگاههاي متعدد صورت گيرد، نياز به يك دوره آماري مشترك دارند كه در آن تمامي ايستگاهها داراي آمار باشند و چنانچه يك يا چند ايستگاه داراي آمار ناقص و جا افتاده باشند از روشهاي مختلف بازسازي (كه در اين تحقيق دنبال مي‌شود) خلاءهاي موجود را بر طرف مي‌سازند اما از آنجا كه هدف در اين بررسي تعيين بهترين روش بازسازي خلاءهاي آماري بارندگي مي‌باشد، لازم است ايستگاههايي انتخاب شوند كه فاقد هر گونه خلاء آماري بارندگي باشد تا آمار بازسازي شده با آمار واقعي مقايسه شود، در ضمن تعداد ايستگاهها حتي الامكان زياد و دوره آماري مشترك نيز طويل‌المدت باشد.

بدين لحاظ در منطقه مورد مطالعه (البرز مركزي) به دنبال دستيابي به ايستگاههايي هستيم كه همه شرايط بالا را دارا باشند. لذا از بين 123 ايستگاه موجود 18 ايستگاه انتخاب گرديد. كه از اين تعداد 15 ايستگاه مربوط به وزارت نيرو و تنها 3 ايستگاه مربوط به سازمان هواشناسي است.

لازم به ذكر است طول دوره مشترك آماري اين 18 ايستگاه 27 سال از سال آبي 52-51 تا پايان سال آبي 78-77 بوده و هيچگونه خلاء آماري در اين سالها به چشم نمي‌خورد. در جدول 3-2 مشخصات اين ايستگاه‌ها به طور كامل درج شده است.

 

جدول 3-2- مشخصات شبکه ايستگاههای استنادی
شماره نام ايستگاه نوع ايستگاه طول جغرافيايی عرض جغرافيايی ارتفاع متوسط بارندگی
1 مهر آباد سينوپتيک 19-51 41-35 1191 17/238
2 افجه باران سنجی نيرو 42-51 51-35 1790 26/645
3 فشم باران سنجی نيرو 35-51 58-35 2060 09/691
4 دوشان تپه سينوپتيک 20-51 42-35 1209 96/264
5 آبيک باران سنجی 31-51 02-36 1220 09/244
6 کريم آباد باران سنجی نيرو 26-50 17-35 1315 06/220
7 زيدشت باران سنجی نيرو 41-50 10-36 1750 47/478
8 زياران باران سنجی نيرو 30-50 06-36 1700 48/377
9 دربند فشند باران سنجی نيرو 45-50 03-36 1780 41/414
10 بيلققان باران سنجی نيرو 02-51 50-35 1360 51/343
11 کوه سفيد باران سنجی نيرو 10-51 49-34 830 67/117
12 باقر اباد باران سنجی نيرو 33-51 22-35 950 46/181
13 رودک باران سنجی يرو 33-51 51-35 1690 55/567
14 کند سفلی باران سنجی نيرو 39-51 51-35 1830 3/556
15 نارون باران سنجی نيرو 40-51 50-35 1750 99/517
16 لواسان باران سنجی نيرو 47-51 49-35 2200 53/553
17 فيروز کوه باران سنجی نيرو 46-52 45-35 1910 36/288
18 سيرا باران سنجی نيرو 09-51 02-36 1790 4/504

 

-2-3- هم تقويم سازي آمار

همانطور كه ذكر شد آمار ثبت شده توسط وزارت نيرو در تقويم شمسي است در حاليكه آمار ثبت شده توسط سازمان هواشناسي كشور در تقويم ميلادي است. از آنجا كه در اين تحقيق از آمار بارندگي ماهانه، فصلي و سالانه چند ايستگاه مربوط به سازمان هواشناسي استفاده مي‌شود لازم است كه آمار بارندگي روزانه ايستگاههاي سازمان هواشناسي اخذ گرديده و با مقايسه تقويم شمسي و ميلادي بر طبق جدول 3-3، آمار روزانه ميلادي ابتدا به آمار روزانه شمسي تبديل و سپس آمار ماهانه و فصلي و سالانه استخراج مي‌شود.

جدول 3-3- تبديل آمار بارندگي از تقويم ميلادي به تقويم شمسي

مهر 23 سپتامبر تا 22 اكتبر فروردين 21 مارس تا 20 آوريل
آبان 23 اكتبر تا 21 نوامبر ارديبهشت 21 آوريل تا 21 مي
آذر 22 نوامبر تا 21 دسامبر خرداد 22 مي تا 21 ژوئن
دي 22 دسامبر تا 20 ژانويه تير 22 ژوئن تا 22 ژوئيه
بهمن 21 ژانويه تا 19 فوريه مرداد 23 ژوئيه تا 22 اوت
اسفند 20 فوريه تا 20 مارس شهريور 23 اوت تا 22 سپتامبر  

 

3-3- روش‌هاي آماري مورد استفاده براي بازسازي خلاء‌هاي آماري

3-3-1- روش رگرسيون

تحليل رگرسيون[1] روشي است كه جهت مطالعه روابط بين متغييرها و بويژه نحوه وابستگي يك متغيير به متغييرهاي ديگر مورد استفاده قرار مي‌گيرد. واژه رگرسيون، اغلب جهت رساندن مفهوم بازگشت به يك مقدار متوسط يا ميانگين به كار برده مي‌شود. در حدود 100 سال پيش، فرانسيس گالتون[2] در مقاله‌اي كه در همين زمينه منتشر كرد، اظهار داشت كه متوسط در پسران داراي پدران بلند قد، كمتر از پدرانشان است. به نحو مشابه متوسط قد پسران داراي پدران كوتاه قد نيز، بيشتر از قد پدرانشان گزارش شده است. بدين ترتيب گالتون پديده بازگشت به طرف ميانگين را در داده‌هايش مورد تاكيد قرار مي‌دهد. در هر صورت امروزه، تقريباً هر گونه مطالعه روابط بين متغييرها از طريق تحليل رگرسيون صورت مي‌گيرد.

اگرچه خود گالتون براي تاكيد بر پديده بازگشت به سمت مقدار متوسط از تحليل رگرسيون استفاده نمود، اما به هر حال امروزه واژه تحليل رگرسيون جهت اشاره به مطالعات مربوط به روابط بين متغييرها به كار برده مي‌شود.

تحليل رگرسيون، تحليلي جهت كمي نمودن ارتباط بين يك متغيير وابسته[3] و يك يا چند متغيير مستقل[4] مي‌باشد. به طور كلي اين تكنيك را مي‌توان جهت دو مقصود اساسي به كار گرفت:

– پيش‌بيني متغيير وابسته بر مبناي مقادير متغيير(هاي) مستقل

– فهم نحوه ارتباط يا تاثيرگذاري متغيير (هاي) مستقل بر متغيير وابسته

3-3-1-1- رابطه خطي با يك متغيير مستقل

معمولي‌ترين و ساده‌ترين شكل و رابطه بين دو متغيير رابطه خطي مي‌باشد. هر چند كه اين روابط براي هر مسئله‌اي مناسب نيست بنابراين همواره بايد در پي پاسخ به اين سؤال باشيم كه آيا دليلي بر وجود رابطه‌اي خطي در دست مي‌باشد يا خير. تا زماني كه تنها با دو متغيير سروكار داريم براي مناسب بودن فرض رابطه خطي حداقل مي‌بايست نمودار پراكنشي از داده‌ها را مد نظر قرار داد. اين نمودار به ما امكان مي‌دهد كه تعيين نمائيم كه آيا اين دو متغيير به طور سيستماتيكي وابسته به يكديگر به نظر مي‌آيند يا خير. اگر جواب مثبت باشد مي‌توانيم تصريح نمائيم كه به طور متوسط :

(3-3)                                                                                

a: عرض از مبدا (مقدار تخمين yi وقتي كه 0= x است)

b: شيب تغييرات (تغيير تخمين در yi به ازاء يك واحد افزايش در xi )

: مقدار پيش بيني شده yi

اكنون سوالي كه مطرح مي‌شود اينست كه مقدار a و b چگونه محاسبه مي‌شوند. يك روش رسم معقول‌ترين خط راستي است كه مي‌توانيم ميان داده‌ها برازش نمائيم. اما بايد توجه داشت كه اين روش مشكل‌آفرين است و نتايج با هر گونه بي‌دقتي در رسم‌خط مستقيم تحت تاثير قرار مي‌گيرد. از اين رو بدست آوردن روش عددي جهت حل اين مشكل، هم دقت و هم سهولت كاربرد بيشتري را متضمن خواهد بود.

با فرض معلوم بودن داده‌هاي متغييرهاي x و y، معمولي‌ترين روش براي محاسبه عرض از مبدا و ضريب زاويه، روش حداقل مربعات[5] است. زماني كه مقادير a و b بدست آمد بر مبناي هر مقدار معيني از x مي‌توان مقدار پيش‌بيني شده‌اي را براي y به دست آورد روش حداقل مربعات در پي انتخاب aو b بگونه‌اي است كه مجموع مربع انحرافات حداقل شود به بيان گرافيكي اين امر به معني انتخاب خط مستقيمي است كه مربع فاصله بين خط فوق و نقاط نمودار پراكنش را حداقل كند. در اينصورت:

(3-4)                                                                

(3-5)                                                                                    

به منظور خلاصه نمودن بهبود حاصل در تخمين متغيير وابسته از خط حداقل مربعات (خط ) بجاي خط افقي (خط ) معمول است كه نسبت تغييرات در متغيير وابسته را كه بوسيله مدل توضيح داده مي‌شود مورد محاسبه قرار دهند جهت محاسبه اين معيار كل تغييرات در متغيير وابسته را به دو قسمت تجزيه مي‌نمائيم. يكي تغييرات توضيح داده شده و دوم تغييرات توضيح داده نشده. بدين ترتيب معيارنسبي خوبي برازش را توسط محاسبه نسبت تغييرات توضيح داده شده به تغييرات توضيح داده نشده به دست مي‌آوريم. به طور مشخص:

 


(3-6)                                                                                     R2=   

از آنجايي كه تغييرات توضيح داده نشده معادل كل تغييرات منهاي تغييرات توضيح داده نشده است در نتيجه مي‌توانيم بنويسيم:

 


(3-7)                                                                                -1R2=   

R2 را ضريب تعيين مي‌نامند.

ضريب تعيين به شكل زير نيز بيان مي‌شود:

(3-8)                                              

براي مدل خطي ساده بيشترين مقدار ممكن R2 يك و كمترين مقدار ممكن آن صفر است كه به ترتيب بيانگر برازش كامل و فقدان هر گونه برازش مي‌باشد.

زمانيكه از يك مدل ساده خطي (مدلي كه تنها داراي يك متغيير مستقل است) استفاده مي شود، ضريب تعيين R2 را مي‌توان با نماد r2 يعني مجذور ضريب همبستگي نيز نشان داد. اين ضريب همبستگي را مي‌توان به طور مستقيم به شكل زير محاسبه نمود.

(3-9)                                   

ضريب همبستگي اندازه‌گيرنده درجه بستگي خطي بين دو متغيير x و y مي‌باشد. ضريب همبستگي مثبت دلالت بر آن دارد كه همانگونه كه مقادير يك متغيير افزايش مي‌يابد، مقادير اختيار شده توسط متغيير ديگر نيز گرايش به افزايش دارد. برعكس يك ضريب همبستگي منفي دلالت بر آن دارد كه همچنانكه مقادير يك متغيير افزايش مي‌يابد، مقادير اختيار شده بوسيله متغيير ديگر گرايش به كاهش دارد. سرانجام اگر ضريب همبستگي برابر صفر باشد در اينصورت اين امر دلالت بر عدم وجود بستگي خطي بين دو متغيير خواهد داشت.

ضريب همبستگي با ضريب زاويه در رگرسيون خطي ساده مرتبط است:

(3-10)                                                                                     

(3-11)                                                                       

(3-12)                                                                       

Sx انحراف معيار x و Sy انحراف معيار y است.

به عبارت ديگر ضريب همبستگي مساوي ضريب زاويه ضرب در نسبت انحراف معيار متغيير مستقل به انحراف معيار متغيير وابسته مي‌باشد. به يك معنا مي‌توان ضريب همبستگي را به عنوان ضريب زاويه استاندارد شده تلقي كرد.

3-3-1-2- رابطه خطي با چند متغيير مستقل

رگرسيون چند متغييري روشي براي تحليل مشاركت جمعي و فردي دو يا چند متغيير مستقل در تغييرات يك متغيير وابسته است.

به منظور تعميم رگرسيون براي مطالعه مسائلي كه داراي تعدادي دلخواه متغيير مستقل است ،مدل زير را مورد استفاده قرار مي‌دهيم:

                                            (3-13)

اين مدل غالباً با نام مدل خطي عمومي معرفي مي‌شود. مدل فوق از آن جهت عمومي است كه حاوي تعداد دلخواهي (m) از متغييرهاي مستقل مي‌باشد و از آن جهت خطي ناميده مي‌شود كه اثرات تمامي m متغيير مستقل، خطي فرض شده است. اما بهر حال امكان لحاظ اثرات غير خطي نيز از طريق تبديل يك يا چند متغيير وجود دارد.

براي مدل خطي عمومي تخمين‌هاي a و bi تا bm از طريق فرمولهاي پيچيده‌اي بدست مي‌آيد. همانند قبل، هدف انتخاب تخمين‌ها به گونه‌اي است كه مجموع مربعات باقيمانده‌ها حداقل شود نتيجه، دستگاه (1+m) معادله‌اي خواهد بود كه مي‌تواند براي محاسبه ضرائب مورد نظر بر مبناي مجموعه‌هاي يك نمونه مورد استفاده قرار گيرد.

3-3-1-2-1- مدل خطي عمومي بر حسب نمادهاي ماتريسي

(3-14)                                     

در اينجا مبين عرض از مبدا است. به علاوه مي‌توان ملاحظه كرد كه تعداد متغييرها (1-k) و تعداد كل پارامترها k مي‌باشد. برحسب نمادهاي ماتريسي مي‌توان اين مدل را به صورت زير نمايش داد.

برای دیدن قسمت های دیگر این تحقیق لطفا” از منوی جستجوی سایت که در قسمت بالا قرار دارد استفاده کنید. یا از منوی سایت، فایل های دسته بندی رشته مورد نظر خود را ببینید.

لینک دانلود متن کامل

  • 1

دیدگاهتان را بنویسید